Journal Pre-proof

The Collision between Wireless and Biology

Paul Héroux, PhD

PII: S2405-8440(25)00647-4

DOI: https://doi.org/10.1016/j.heliyon.2025.e42267

Reference: HLY 42267

To appear in: HELIYON

Received Date: 20 May 2024

Revised Date: 13 January 2025

Accepted Date: 23 January 2025

Please cite this article as: P. Héroux, The Collision between Wireless and Biology, *HELIYON*, https://doi.org/10.1016/j.heliyon.2025.e42267.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Ltd.

The Collision between Wireless and Biology

2 3	Paul Héroux, PhD
4 5	International Commission on the Biological Effects of Electromagnetic Fields and
6 7	Department of Epidemiology, Biostatistics and Occupational Health Faculty of Medicine
8	McGill University
9	Montreal, Quebec, Canada
10	paul.heroux@mcgill.ca
11	<u>Tel. (514) 767-5556</u>
12	
13	Abstract
14	This article examines the historical development of the concept of energy of
15	activation, which has been used in the past to frame the belief that non-ionizing
16	electromagnetic radiation is harmless at non-thermal levels.
17	The power and telecommunications industries have used two arguments to support
18	their view that human exposures to non-thermal non-ionizing radiation is
19	inoffensive. First, the radiation is non-ionizing. Second, the energy quanta of the
20	radiation are too weak to overcome the competing energy of thermal motion.
21	Those arguments rest on the Arrhenius equation (1889) and on the concept of
22	energy of activation. Later scientific developments such as the Eyring equation
23	(1935) and the Bennett-Chandler (1977-1978) equation on reaction rates, and the
24	Second Law of Thermodynamics, recognized in living systems by Schrödinger as
25	"negentropy", all undermine these arguments.

Journal Pre-proof

26	The Second Law of Thermodynamics supplies the ionization claimed to be
27	lacking, while some biological processes are independent of thermal motion.
28	We contribute a new view of the physics and biology of non-ionizing
29	electromagnetic radiation hygiene which explains many epidemiological,
30	toxicological and scientific observations.
31	The health effects of non-thermal non-ionizing radiation presently observed are in
32	fact completely supported by physics. Furthermore, the expansion of wireless data
33	rates is in direct conflict with preservation of a healthy environment.
34	
35	Keywords
36	Electromagnetic Radiation; Heat; Health Impacts; Ionization;
37	Telecommunications; Specific Absorption Rate.
38	
39	List of Abbreviations
40	ADP. Adenosine Di-Phosphate.
41	ATP. Adenosine Tri-Phosphate.
42	C _f . Crest Factor.
43	COMAR. Committee on Man and Radiation.
44	Δ G. Change in Gibbs (free) energy.
45	ΔS . Change in entropy.

- 46 E_a. Energy of Activation.
- 47 IEEE. Institute of Electrical and Electronics Engineers.
- 48 ELF. Extra-Low Frequencies.
- 49 FCC. Federal Communications Commission.
- 50 GSM. Global System for Mobile Communications.
- 51 IARC. International Agency for Research on Cancer.
- 52 ICBE-EMF. International Commission on the Biological Effects of
- 53 Electromagnetic Fields.
- 54 ICNIRP. International Commission on Non-Ionizing Radiation Protection.
- 55 LTE. Long Term Evolution.
- 56 MOSFET. Metal-Oxide Semiconductor Field Effect Transistor.
- 57 NTER. Non-Thermal Electromagnetic Radiation.
- 58 NTP. National Toxicology Program.
- 59 OXPHOS. Oxidative Phosphorylation.
- 60 ROS. Reactive Oxygen Species.
- 61 RF. Radio-Frequencies.
- 62 SAR. Specific Absorption Rate.
- 63 UPC1. Uncoupling Protein 1.

65	Declarations
66	Ethics approval and consent to participate
67	Not applicable.
68	Consent for publication
69	Not applicable.
70	Availability of data and materials
71	Data sharing is not applicable to this article as no datasets were generated or analysed during the
72	current study.
73	Competing interests
74	The author declares that he has no competing interests.
75	Funding
76	None.
77	Authors' information
78	The author is professor of Toxicology and Health Effects of Electromagnetism at McGill
79	University. He serves as Vice-President and Commissioner of the International Commission on
80	the Biological Effects of Electromagnetic Fields.

82	Introduction
83	Technological electromagnetic radiation, the Extra-Low Frequencies from power
84	systems (50 or 60 Hz), or the Radio-Frequency radiation from broadcasting and
85	cellular phone networks, has spread rapidly in our environment in the last century
86	Should this radiation be controlled or confined to protect human health? The
87	interesting scientific principles relevant to the discussion have been obfuscated by
88	the powerful financial interests that were created as power and wireless
89	deployments met with tremendous commercial penetration.
90	As a result, a controversy over health effects of non-thermal electromagnetic
91	radiation (NTER) has been maintained for far longer than necessary.
92	
93	Thinking based on Energy
94	IEEE (1991) and ICNIRP (1995) have used two arguments to claim that NTER is
95	inoffensive.
96	
97	Argument 1 is that NTER does not carry enough energy to ionize living tissues.
98	Few atomic elements have ionization energies lower than 8×10^{-19} J, and this
99	energy corresponds to an electromagnetic wavelength of 0.16 μm , in the near
100	ultraviolet. Along the electromagnetic spectrum, typical Radio-Frequencies (RF)

rate at 6.6 x 10⁻²⁵ J, and Extra-Low Frequencies (ELF) even lower at 4 x 10⁻³² J. RF 101 102 and ELF radiation are viewed as too weak to have any consequence. 103 Argument 2 is that the thermal energy of water molecules (~1.5 x 10⁻²⁰ J) would 104 completely overwhelm the smaller energies (6.6 x 10⁻²⁵ and 4 x 10⁻³² J) applied by 105 106 NTER to atomic ions in the body. Under the assumption that calcium ions, for example, were energized directly by NTER, collisions between calcium ions and 107 108 water would have rapidly dissipated any contribution of NTER, setting up the socalled "kT paradox" (Binhi 2007). 109 110 111 These two arguments are used to claim that biological effects from NTER are impossible and can only be attributed to the high intensities connected with 112 113 heating. The two arguments are loosely connected with the First Law of Thermodynamics, the conservation of energy, in the sense that if a phenomenon is 114 115 going to happen, it must be propelled by a legitimate force or energy. 116 These assumptions have led to human safety testing based exclusively on heat. 117 Quantification of electromagnetic heat injection in biological tissues was widely 118 employed in radio-frequency radiation bioeffects research (Justesen 1975; Frey 119 1994) and in medical applications such as microwave ablation otherwise known as

- oncological hyperthermia (Anghileri 1986) using the Specific Absorption Rate
- 121 (SAR), in W/kg.

123
$$SAR = \frac{\sigma |\vec{E}|^2}{2\delta} = \frac{\omega \epsilon_0 \epsilon_1 |\vec{E}|^2}{2\delta}$$
 (1)

- σ is electrical conductivity in Siemens per meter, E the electric field inside the body in V/m, δ
- the density (kg/m³), ω the angular frequency in radians per second, ε_0 the dielectric constant of
- free space, 8.85×10^{-12} F/m, and ε_1 the relative dielectric constant, a pure number.

127

- 128 IEEE/ICNIRP adopted the injected SAR and associated temperature rise as indexes
- of the biological impacts of electromagnetic field exposures, with a limit of 1
- 130 Kelvin above body temperature (IEEE C95.1-1982). A relation between SAR,
- temperature rise, and time of application was published by Guy in 1976.

132

133
$$SAR = 4,186 \frac{c \Delta T}{t}$$
 (2)

- c is the tissue's heat capacity (kcal/kg x K), ΔT is the temperature rise (Kelvin), and t is the
- exposure time (second).

- Equation 2 is valid as long as "t", the time of radiation exposure, is sufficiently
- small to ensure that dissipative influences for heat transfer are negligible.

Examples of "dissipative influences" are blood flow (perfusion) if the tissue is alive and conduction if the tissue is dead. Relevant dissipative times for whole body exposures were quoted as between 6 and 30 minutes (IEEE 1991).

142 Combining (1) and (2), we obtain the following.

144
$$\Delta T = \frac{\omega \epsilon_0 \epsilon_1 |\vec{E}|^2 t}{4{,}186 \times 2 \times \delta \times c} = K \omega |\vec{E}|^2 t \qquad (3)$$

According to an energy metric, the health impacts of electromagnetic radiation, whether sub-thermal or thermal, would generally increase in proportion to ω (the carrier frequency) and E^2 (the environmental electromagnetic field translated to its intensity in the body). But for IEEE/ICNIRP, K is too small for NTER health effects to be significant.

The critical safety tests on the effects of radiation on living beings retained by IEEE/ICNIRP were performed on a small number of rats (8) and monkeys (5), and over 40 to 60 minutes. This illustrates an *a priori* conviction that heat is the only possible agent of damage, and that health impacts of electromagnetic radiation cannot occur beyond one hour (Héroux 2023).

The procedure used in industry to homologate a portable phone simulates human tissues using a solution of sugar (45-56%), water (40.4-52.5%) and salt (1.4-2.5%) (FCC 1997). But as we shall see below, this thermal model cannot represent the metabolic activities or micro-anatomy of living tissue.

161

162

166

167

168

169

170

171

172

173

Arrhenius (for gases)

For IEEE/ICNIRP, chemical reactions must be triggerable by NTER to justify nonthermal effects, and these reactions have energy thresholds that are not met by either RF or ELF NTER.

In thermodynamic thinking, even biochemical reactions with negative Gibbs free energy (Δ G<0, exergonic) do not occur spontaneously, and must be provided with an energy of activation to get started. The logic is that in any reaction, some bonds must be broken before new ones are formed.

In 1889, Arrhenius explained that most reactions require added heat energy to proceed by formulating the concept of *activation energy*, a barrier that must be overcome before two molecules react. The Arrhenius equation relates the activation energy (E_a) to the rate (k) at which a reaction proceeds.

174

$$175 \quad k = Ae^{\frac{-E_a}{RT}} \quad (4)$$

176 R is the universal gas constant, T is the temperature in Kelvin.

This equation can be used to support the energy comparisons used by IEEE/ICNIRP to deny NTER health effects: larger activation energies (E_a) are associated with ionization and water molecules than with those available from NTER. But the Arrhenius equation, developed between 1860 and 1872, is quite limited. It is based on empirical observations in gases, and on their theoretical analysis, an energy averaging over a Maxwell–Boltzmann distribution, with Ea as a lower bound.

Eyring (for liquids)

An improved expression for chemical Reaction Rates was proposed by Eyring in 1935. Contrary to the Arrhenius equation, restricted to gases, its scope included condensed matter such as liquids or solids. The Eyring equation expresses the relationship between Reaction Rate (k) and the Gibbs (free) energy of activation, ΔG , which represents the energy needed for a reaction at constant pressure.

$$194 \quad k = \frac{\kappa_t k_B T}{h} e^{\frac{-\Delta G}{RT}} \quad (5)$$

 κ_t is the transmission coefficient of the transition state to the product (between 0 and 1), k_B is Boltzmann's constant, and h Planck's constant.

In liquid solutions, molecules must often be put in a contorted state to trigger a reaction, and the energy for such a change can come from the thermal movement of water molecules (~1.5 x 10⁻²⁰ J). The molecules critical to living systems (protein, DNA, RNA) need to be stable, and would disintegrate if their activation energy was too low, so it is observed that temperature does not affect them, as long as it is within the physiological range.

Bennett-Chandler (enthalpy and entropy)

A further refinement on Reaction Rates was contributed by Bennett in 1977 and Chandler in 1978, which accounts for the energy involved in the formation of the "unstable intermediate", the activated complex that makes the final reaction possible. These activated conformational changes are important for biological macromolecules. The Reaction Rate (k) is then written as follows (Espenson 1981).

213
$$k = \frac{\kappa_t k_B T}{h} e^{\frac{-\Delta H}{RT}} e^{\frac{\Delta S}{R}}$$
 (6)

214	The first factor represents collision frequency, ΔH the enthalpy of activation, and ΔS the entropy
215	of activation related to the creation of the activated complex or transition state: positive ΔS
216	indicates a dissociative, and negative ΔS an associative mechanism.
217	
218	The Bennett-Chandler equation explicitly displays entropy (S). A fall in entropy
219	ΔS must be accompanied by a rise in free energy ΔH . Although this equation was
220	developed for a specific chemical reaction, it can be re-interpreted as a homeostatic
221	expression for the collection of reactions happening in living systems.
222	Sustaining life (homeostasis) requires continual arranging of atoms and molecules
223	into assemblies needed to repair, develop and duplicate living cells. Development
224	of these complex structures decreases entropy (- ΔS), counteracting the universal
225	tendency towards disorder and uniformity prescribed by the Second Law of
226	Thermodynamics.
227	To remain consistent with the Second Law of Thermodynamics, self-organizing
228	reactions that lower entropy values (life processes) must dissipate energy so as to
229	increase entropy ($+\Delta S$) elsewhere (Pascal 2023). This compensation is what
230	Schrödinger described in 1944 as feeding on negative entropy, or "negentropy"
231	(Schrödinger, republication 2010).
232	The energy needed comes from redox reactions that transfer electrons. These
233	electron transfers inevitably involve some electron losses. It is these electron losses
234	that are avidly captured by oxygen as Reactive Oxygen Species (ROS) and

235	produce the increase in entropy required to at least balance the entropy lost to
236	biosynthesis. The negative effects of ROS are controlled by enzymatic antioxidants
237	such as superoxide dismutase, catalase and glutathione, and non-enzymatic
238	antioxidants such as vitamin C and E, carotenoids, thiols, flavonoids and melatonin
239	(Flora 2009).
240	
241	About Argument 1
242	By requirement of the Second Law of Thermodynamics, living tissues are
243	inevitably actively ionized and generate ROS through metabolic activity. The fact
244	that life provides its own metabolic energy, activating reactions independently of
245	the energy injected by electromagnetic fields, removes all objections to NTER
246	health effects based on the First Law of Thermodynamics. Although living systems
247	would be more vulnerable to NTER if it was ionizing, targets (ROS) are provided
248	for the action of NTER by the very process of life itself, even if NTER is non-
249	ionizing (Yakymenko 2016).
250	
251	About Argument 2
252	Inorganic redox electron transfers between two atoms typically occur over very

small distances, fractions of nanometers or nm (Vance 2000; Gauduel 2003). For

254	scale, refer to the diameter of hydrogen (0.1 nm) and iron (0.25 nm) atoms as green
255	dot and red dots in Figure 2.
256	But biology has made two evolutionary choices in its implementation of biological
257	redox reactions as oxidative phosphorylation (OXPHOS).
258	The first is biomolecular: tunneling of electrons over multiple nanometers in series
259	within large molecules (Figure 2).
260	The second is a micro-anatomical one in mitochondria that will be described in
261	later sections: the transfer of electrons and protons over hundreds of nanometers to
262	provide living systems with energy in the form of adenosine triphosphate (ATP).
263	This expansion of the physical size of electron and proton currents amplifies the
264	interaction between external NTER and living processes.
265	These electron and proton currents thus provide a target for NTER without the
266	need for external ionization, and these targets are inevitable according to
267	thermodynamics.
268	
269	Electrons in metallic conductors react at the speed of light to the application of
270	voltage, but heating of the metallic ions lags behind because moving electrons need
271	to collide repeatedly with metal atoms to heat them. This view is compatible with
272	the Drude-Summerfeld model (Summerfeld 1927) of delocalized electrons (a
273	degenerate Fermi gas) in metals. In living tissues, the light charge carriers

(electrons and protons) are not tightly linked to the energy of atomic ions or
molecules, particularly if the field is applied suddenly and for very short times
(non-thermal), which is frequently the case for pulsed wireless communication
signals.
The energy-generating redox reactions embodied by OXPHOS provide continuous
electron and proton flows over 150 nm distances that amplify the vulnerability of
living tissues to environmental NTER: these currents are 200 times the size of
those in simple redox reactions, which were themselves thought to be vulnerable to
NTER (Binhi 2007). The critical reactions of OXPHOS were provided by
chemistry even at the origin of life and are designated as "metabolism" by
biologists.
Life Reactions: Metabolism, Redox, ATP
"Metabolism" can refer to the sum of all chemical reactions that occur in living
organisms, but more specifically to the chemical reactions that use food to produce
the energy that we need to move, think, grow, and repair tissue damage.
Electrons supply the energy to run biological reactions. Electrons have more
energy when they are in less electronegative atoms (such as C or H in our food,
which we "oxidize"), and less energy when they are associated with a more

electronegative atom (such as the oxygen we breathe, which we "reduce"). The
electron movement from food to oxygen within the mitochondria in our bodies is
called the <i>electron transport chain</i> . Because oxidation and reduction usually occur
together, these pairs of reactions are called "redox" reactions. Redox is involved in
all important biological processes, such as cellular respiration and photosynthesis.
As electrons are passed from an electron donor (food) to an electron acceptor
(oxygen) in the body, the energy difference is used to stock a pool of protons, and
these protons are used to produce molecules of adenosine triphosphate (ATP). ATP
carries releasable energy and diffuses throughout the cell to power its reactions
(ΔG >0, endergonic). Note that the energy available from a single molecule of
ATP, 5.1 x 10 ⁻²⁰ J, is approximately 3.4 times higher than a water molecule's
kinetic energy.
Cells die without ATP. We know that 5 to 6 seconds without ATP generation
causes severe arrhythmia and cardiac failure. If oxygen-carrying blood to the brain
is blocked, a person passes out within 5 to 10 seconds, and dies within minutes, as
ATP disappears, and its production is halted. Humans consume their own weight in
ATP every day, and as it is broken down to adenosine diphosphate (ADP), the loss
of one phosphoanhydride bond releases 26 kJ/mol. But since our body only
contains about 50 g of ATP, each ADP molecule must be recycled to ATP from
500 to 750 times each day.

The following reaction, glycolysis, is actually a series of ten chemical reactions that require the input of two ATP molecules. This input is used to generate four new ATP molecules, which means that glycolysis results in a net gain of two ATPs.

 $C_6H_{12}O_6$ (glucose) + 6 $O_2 \rightarrow$ 6 CO_2 + 6 H_2O

The reaction above yields two ATPs. But a process which combines the oxygen we breathe with fatty acids from our food yields 30 to 32 ATP molecules. Because the process requires oxygen and phosphorylates ADP to ATP, it is named oxidative phosphorylation (OXPHOS). We will see below that OXPHOS is totally dependent on continuous currents of electrons and protons to maintain metabolism (Mitchell 1966). This implementation of metabolism, OXPHOS, magnifies the size of the target of interaction with NTER beyond the free radicals required by the Second Law. All this *inevitable* metabolic activity is the essential distinction between living and inert materials and has been the focus of three Nobel prizes (Warburg 1931; Krebs 1953; Boyer, 1997).

Electron and Proton paths in Mitochondria
A single OXPHOS chain is made of many enzymes, some of which are very large
molecules named Complexes I to V. Electrons and protons currents circulate
continuously between Complexes.
Electron Current
Electrons available from our food enter Complex I (labeled red "1") in Figure 1
and are carried away at Complex IV (labeled red "2"), where oxygen atoms accept
the electrons, which are then passed on to water molecules. Electrons are propelled
through molecules by tunneling (see Belevich 2010 for Complex IV) or diffusion
through water (Castelvecchi 2021). The whole electron transport chain (I to IV) is
of the order of 100 nanometers in length (Hirst 2018).

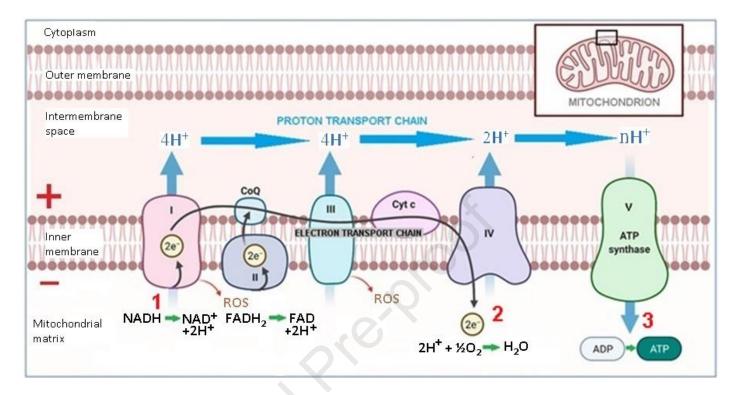


Figure 1. Electron and proton currents are traced in black and blue, respectively, within the OXPHOS chain. Molecular Complexes are labeled with black Roman numerals (I to V). The diagram is about 200 nanometers wide. Plus and minus signs in red indicate static polarization of the inner mitochondrial membrane.

Figure 2 shows the tunneling path of electrons across seven or more gaps in series (vellow arrows) through Complex I, otherwise known as NADH ubiquinone oxido

(yellow arrows) through Complex I, otherwise known as NADH ubiquinone oxido-

reductase. The enzyme aligns iron atoms (in red) for the transfer of electrons

across gaps of less than 1.4 nm (Kuss-Peterman 2016).

The gap length is critical in determining the speed of electron transfer, as an

increase of 0.1 nm means a 10-fold decrease in transfer speed (Moser 2010).

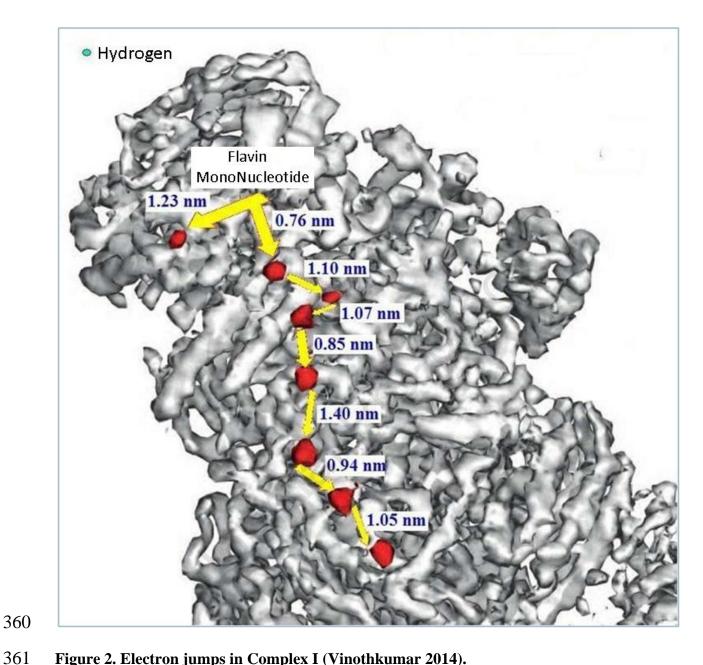


Figure 2. Electron jumps in Complex I (Vinothkumar 2014).

362

363

364

365

366

These traveling electrons are inevitably pulled on by external alternating electromagnetic fields, changing their position and circulation. Complex I itself, with a molecular weight of 950,000 Daltons, is 1.73 billion times more massive than an electron, forming an immovable reference to the NTER action on

367	electrons. Perturbation of electron flow in Complex I and elsewhere allows the
368	"smaller energies" of electromagnetic radiation to control large proton fluxes into
369	the inter-membrane space of mitochondria.
370	Turning briefly to electrical engineering, small electric or magnetic fields
371	impacting large currents should be familiar. Metal-Oxide-Semiconductor Field-
372	Effect Transistors (MOSFET, the most common transistor in digital circuits) use
373	electric fields to control currents 2.9 x 10 ¹⁵ times larger. Spin tunnel junction
374	magnetic sensors (Spin TJ 2024) offer detectabilities of 100 pT/Hz ^{1/2} at 1 kHz. The
375	MOSFET and Spin TJ examples illustrate the large sensitivities that are achieved
376	in semiconductor devices, and that could find analogs in biological systems.
377	This may explain why certain investigators (Hutter 2006) have documented human
378	symptoms of electromagnetic radiation exposures at tens of $\mu W/m^2$.
379	
380	Proton Current
381	The proton transport chain also starts at Complex I (labeled red "1") as well as at
382	Complexes III and IV, and ends at Complex V, ATP synthase (labeled red "3").

This is where Adenosine Diphosphate (ADP) is upgraded to ATP, the energy

inner membrane, without counter-ions.

currency of cells. The proton current flows in the inter-membrane space along the

The protons keep the inner membrane under a typical voltage of 160 mV (+ and – in red in Figure 1), the highest static electric field (30 MV/m) of all eukaryote systems. The unusual strength of this polarization can be appreciated if we remember that most biological membranes puncture beyond 1000 mV. There is a difference of 1 in pH between the inter-membrane space and the mitochondrial matrix.

Entering ATPS synthase (Complex V), proton current flows towards a nanoconfined alpha water channel with a structure similar to ice (Reiter 2011) that gives it exceptional tunneling conductivity. Complex V itself is a protonic motor (Yoshida 2002) driving a rotation which upgrades ADP to ATP. The proton transport chain covers distances of the order of 200 nm (Sjoholm 2017; Muhleip 2023).

OXPHOS Architecture

The electron transport chain that consumes glucose and other foods using oxygen releases energy ($-\Delta G$), while the proton transport chain synthesizing ATP absorbs energy ($+\Delta G$). Nature has every interest in making the electrical circuit in each of them as conductive as possible. This is why the OXPHOS Complexes I to V are tightly arranged in the cristae of mitochondria (folds of the inner membrane visible at top right of Figure 1).

406	This high conductivity also manifests when the protein UPC1 (also known as
407	thermogenin) is activated in the inner mitochondrial membrane, creating
408	"uncoupling". UPC1 is a channel that allows protons to pass from the inter-
409	membrane space to the matrix without traveling through ATP synthase. By
410	providing an alternate low energy route for protons ("shunt") to flow back into the
411	matrix, UPC1 allows food energy to be dissipated as heat (Rousset 2004). This
412	adaptive process is used to generate non-shivering heat in tissues known as brown
413	fat (Nicholls 2021).
414	The Complexes of the electron transport chain are grouped together in super-
415	complexes, while ATPS groups, critical to OXPHOS's optimal operation
416	(Morowitz 1978; Bennett 2021), are a little further away (Muhleip 2023). The
417	physical arrangement of the complexes (I to V) is variable over time according to
418	physiological conditions and is altered in diseases such as Alzheimer's and
419	Parkinson's (Novack 2020). Although OXPHOS units are only hundreds of
420	nanometers in size, an enormous number are scattered through the human body
421	("multiple input" for NTER), as shown in the last column of Table 1: there are
422	many cells in the human body, there are many mitochondria per cell (Figure 3),
423	and there are many OXPHOS chains per mitochondrion.

Table 1. The total length of active currents that can be influenced by radiation is considerable.

Cells in human body	Mitochondria per cell	ATP Synthase molecules per mitochondrion	Number of 150 nm Conductors (Cells x Mito x ATPS) in human body
36 x 10 ¹² (male) 28 x 10 ¹² (female)	100^{1}	100 - 5 000 ²	280 000 000 000 000 000 to 18 000 000 000 000 000 000

Total Length of Receiving Antenna Segments = $4.2 - 270 \ 10^7 \ \text{km}$

² Counting only active ATPS; total ATPS can be up to 100 times higher (Fahimi 2021).

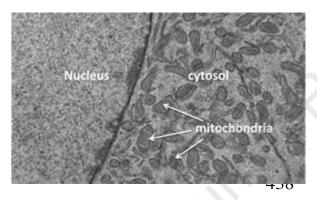


Figure 3. Micrograph shows the border of the nucleus of a cell and adjacent cytosol, which contains large numbers of mitochondria (Cameron 2013).

The last column of Table 1 shows that the human body hosts quintillions of

conductors hundreds of nanometers in size, continuously bearing the electronic and protonic currents needed to maintain cellular energy. For scale, these small conductors carry electron and proton currents over distances 536 times larger than a molecule of water, which is only 0.28 nm in size.

Proton movement is expected to be favored by the exceptionally strong Stern layer formed on the mitochondrial inner membrane by the 160 mV polarization, which acts as a "skating rink" for the efficient transfer of the protons of metabolism.

¹ 5 for sperm; 200 for skin; 1 000-2 000 for liver; 1 600 for small intestine; 1 700 for muscle; 5 000 for heart muscle; 600 000 for human egg; 2 000 000 for brain cell. See Figure 3.

Detailed modeling of the electrical properties of biological tissues shows that
living matter has a dielectric constant across wide frequencies much larger than
expected from the Debye dispersion of water (Cundin 2010). This analysis
perceives a metallic (highly conductive) component hidden within the dielectric
properties of biological tissues.
By weight, the human body is mostly water. In the visible part of the NTER
spectrum, the absorption coefficient of water is exceptionally low, which means
that under this radiation (light), the water matrix is mostly undisturbed. The
situation is different in the GHz range and it is a commonly held engineering view
that the high absorption of NTEM at such frequencies is beneficial, leading to poor
penetration in living organism, but with the inconvenience that SAR concentrates,
sometime to thermal levels, on delicate surfaces such as the eye (Levine 2009).
But at frequencies of Wi-Fi (5 GHz) and high band 5G (26 GHz), the absorption
coefficients of water are respectively 1,000 and 10,000 times higher than in the
visible (Segelstein 1981), perhaps leading to perturbations in the interactions of
hydrated protein (Fogarty 2014).

Where the Environment Perturbs Metabolic Currents

- 465 Maxwell's equations are non-homogenous linear partial differential equations.
- Mathematically, the sum of any two solutions of these equations is itself a solution

467	(Crawford 1968). The principle applies to all waves, and specifically to
468	electromagnetic waves, and says that when two waves overlap in space, the
469	resulting wave is equal to the sum of the individual waves. This is widely known
470	as the principle of superposition.
471	Since there is a field driving the electron and proton currents, this field will be
472	perturbed by electromagnetic radiation coming from outside, specifically by
473	radiation emitted by a cell phone, network tower, or power system.
474	Even though the static membrane polarizing fields are huge, the fields moving the
475	electrons and protons are much smaller, which means than the alternating fields
476	from NTER, can perturb the OXPHOS process. A multitude of points of action are
477	possible: electron tunneling steps in Complexes, diffusion of electrons and protons
478	in water, and tunneling of protons through ATP Synthase's special alpha channel.
479	Thus, the perturbation of the currents of metabolism by the currents induced by
480	environmental NTER depends only on the two occupying the same space. That
481	environmental NTER effectively modifies the biological fields of metabolism way
482	below thermal levels is demonstrated by many reports, but we mention here two
483	particularly clear ones, for ELF (Li 2013) and for RF (Sanders 1985).

485

When the Currents Stop

Journal Pre-proof

486	The free electrons and protons of metabolism should manifest in measurements of
487	the dielectric properties of living tissues. Classical work on these dielectric
488	properties investigated the dispersion over frequency of individual components
489	such as water, protein, biopolymers and solvated biomolecules. Studies were also
490	made of the electrical properties of biological membranes.
491	However, few measurements were made in tissues that were actually alive
492	(Schwan 1956), and tissues samples were viewed as "fresh" even tens of hours
493	after excision. Fleeting reference is made in the literature to delocalized electrons,
494	protonic currents and to travel of electrons through molecules, but the overall
495	mindset is the investigation of a passive circuit as opposed to an active
496	(metabolizing) one. There is only a passing reference to the influence of
497	physiological state on dielectric properties (Pethig 1979).
498	
499	When oxygen supply is stopped to a living tissue, there is nothing to maintain this
500	polarization, and detectable changes should occur.
501	

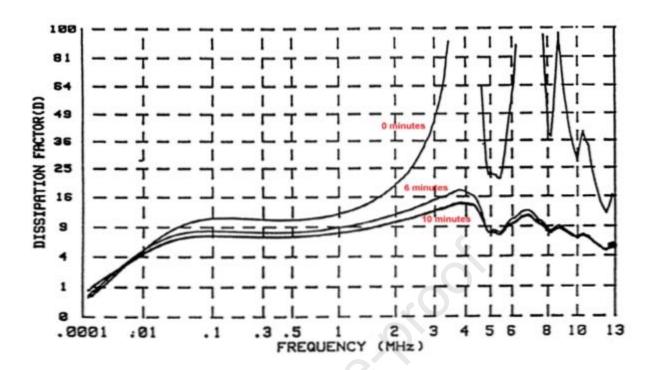


Figure 4. Dissipation Factor (D) dispersion across frequency (MHz) in the cortex of a rabbit following anesthetic overdose. Measured at 0, 6, and 10 minutes after overdose (Héroux 1993) .

Figure 4 shows a real-time measurement of the electrical dissipation factor in the brain cortex (~1 mm deep) of a rabbit. Following anesthesia, parietal craniotomy, removal of the dura and implantation of an impedance probe, the first (baseline) measurement is completed at 0 minutes. Immediately, an intra-peritoneal barbiturate overdose is then administered. The overdose inhibits the rabbit's respiratory center: blood flow and oxygen to the brain are stopped about 2 minutes later. Proton and ATP supply interruptions follow in short order, corresponding to the "6 minutes" trace in Figure 4. The relatively rapid measurements were provided by a Hewlett-Packard 4192A Impedance Analyzer.

What these results suggest is that within times that correspond to loss of consciousness under anoxia, dielectric properties of living tissues can change very drastically. The variable used in Figure 4 is the Dissipation Factor, R/X, familiar to engineers as tangent delta (tg δ = 1/Q). This metric is used because of its low sensitivity to effective electrode area, to relative orientation between tissue fibers and electrode pair axis, yet is favorable to sensing small tissue electrical properties, as reactance (X) is the denominator (Héroux 1993). The results reported in Figure 4 are not typical of what happens on interruption of blood perfusion in other body tissues, which vary widely in their speed of reaction to anoxia.

Table 2. Electrical Impedance changes in Rat tissues following Anoxia (Héroux 1991; Fahimi 2021).

Tissue	Impedance Change (Ohms / minute)	Mitochondria / cell
Muscle $(n = 10)$	0.436	1 700
Liver $(n = 10)$	6.15	$1\ 000 - 2\ 000$
Brain $(n = 2)$	128.7	2 000 000

The tissue impedance changes listed in Figure 2 are geometrical means across frequency (240 frequencies) of resistance and reactance values.

Since there is a rough dependance between Ohms/minute and number of mitochondria per cell, one can infer that impedance change rates reflect the

dependency of the tissues on oxygen supply. Although these numbers are

535 comforting for muscle and liver transplants, they augur poorly for brain 536 transplants. Given the corresponding time frames between anoxia and impedance 537 changes, it may be that syncope can be measured in Ohms. 538 It is therefore not surprising that the effects of NTER would occur most obviously 539 in the nervous system in animal models (NTP 2019; Falcioni 2018) and in 540 electromagnetically hypersensitive subjects (Belpomme 2023).

541

542

543

544

Crest Factors, Fields, and Time

The following equation is a re-write of equation 3 which represents the NTER impacts (in Kelvin) that can result from injection of small sub-thermal fields.

545

545
$$546 \quad NTER \ impacts = K\omega |\vec{E}|^2 t = K_1 \omega |\vec{E}|^2 \quad (7)$$

547

548

549

550

551

552

553

In equation 7, we eliminate time "t" by choosing for "t" the length on an LTE frame (10 msec), which fulfills the condition of equation 2 of low dissipative influences (10 msec = 0.000166 minute << 6 minute), and swapping K for K_1 . But we are aware that wireless digital signals are made of successive pulses and not uniform over time. Consequently, to accurately represent the total range of activation energies that are enabled by a particular signal, one should consider the 554 crest factor C_f of such signals. Under the assumption that transition thresholds of 555 important biological reactions are uniformly distributed as a function of field 556 intensity, we obtain.

557

558

 $NTER \ impacts = K_1 \omega \left| \vec{E} \right|^{2-4} C_f \quad (8)$

559

560

Some investigators (Miclaus 2023) have examined such crest factors for 4G and 5G signals referenced to mean power, based on complementary cumulative 561 distribution functions, and have quoted Cfs of 5 to 11 for 4G and 8.5 to 16.2 for 562 563 5G. Equation 8 simply states that when higher energy levels are reached, even briefly, a 564 wider range of physiological processes can be triggered. 565 The inclusion of a crest factor in equation 8 can also be justified from an 566 567 engineering perspective, as rapid rise pulses such as a δ function have wide Fourier 568 transforms, enabling them to disturb biological steps with different resonances or 569 transition times, some of which may combine synergistically. Wireless transient signals are difficult to absorb for biological systems, simply because they occur at 570 571 speeds beyond physiology, which is slower in practically all aspects of its controls 572 such as hormones, cytokines or even action potentials.

A classic toxicological concept is now added to equation 8, "Area Under the
Curve". This concept simply expresses that the more sustained a stimulus is over
time, the stronger the response. This is included by the factor "t*" in equation 9.

578 NTER impacts = $K_1 \omega |\vec{E}|^2 C_f t^*$ (9)

This "t*" is Non-Thermal Time, different from the "t" in equation 7, because it has an athermal restriction. In other words, the variable integrates the presence of the stimulating field over time, but never in such a way as to significantly increase temperature (low duty cycle).

A last adjustment to equation 9 may be needed, as physiological reactions to transient events have been gauged by two enlightening metrics in other areas of science, such as mechanical vibration (Thuong 2011). The rms method (with an exponent of 2, compatible with energy) and the root-mean-quad method (exponent of 4) tended to, respectively, underestimate and overestimate the discomfort of acceleration in mechanical vibration. The optimum evaluation method had an exponent of about 3.0 for 1-Hz motions and 3.5 for 8-Hz motions, which seems to indicate that a higher exponent is appropriate for more rapid phenomena.

593
$$NTER \ impacts = K_1 \omega \left| \overrightarrow{E} \right|^{2-4} C_f \ \mathbf{t}^*$$
 (10)

594

595

- **Shannon-Hartley Theorem**
- 596 The Shannon–Hartley theorem establishes the capacity of a finite-
- bandwidth channel subject to Gaussian noise as follows.

598

599 Capacity
$$\left(\frac{Bits}{second}\right) = Bandwidth (Hz) \times \left(\frac{Signal (Watts)}{Noise (Watts)}\right)$$
 (11)

600

- Since in practice wider bandwidths can be assigned for a similar number of
- 602 channels when carrier frequency is higher, assuming a constant noise background,
- and a signal energy proportional to field squared, we obtain the following.

604

605 Functional Wireless Capacity = $K_2 \omega |\vec{E}|^2 \propto NTER$ impacts (12)

606

In (12), K_2 includes crest factor C_f and non-thermal time t^* .

It therefore appears that opportunities for greater wireless data transit, which depend on higher carrier frequencies and larger signal to noise ratios, which are closely related to crest factors, unavoidably imply larger NTER health impacts, even under conventional thermal and energy of activation thinking.

The analysis also pictures IEEE/ICNIRP views on NTER health effects as residing in the late 19th century.

Vulnerability of Life to General Radiation

What escaped the attention of many is that life's metabolism and design make it much more vulnerable to NTER than inert matter. Living tissue has mostly adapted to the Sun's radiation as well as to the static field of the Earth only through the course of 3.5 billion years of evolution. But this immunity is not complete, as we still sunburn and get cancer from ultra-violet radiation. A favorite model of biologists which is small enough to be seeped through by radiation, the fruit fly (*Drosophila melanogaster*), is far healthier under dark conditions, all other visible colors shortening life-span and locomotor activity by as much as 40% (Krittika 2022). Observations in human populations seem to confirm this, as chronic exposure to cell tower radiation has been linked in a small study to unrepairable genetic damage. Low dose GSM 900 and LTE radiations increased the incidence of a number of different types of chromosomal aberrations (Gulati 2024). The

629	connection between metabolic disturbances by NTER, ROS generation and
630	mutations is physiologically plausible.
631	But the levels of NTER from wireless techniques that we are experiencing now are
632	totally unprecedented, and living systems have no defense against this new arrival
633	(Bandara 2018).
634	Even for static fields, adverse cardiovascular outcomes have been linked to
635	changes of 10 nT, 0.03% of the Earth's baseline (Zilli Vieira 2022).
636	
637	Political History of NTER Health Effects
638	Nancy Wertheimer linked ELF magnetic fields to leukemia in children in 1979.
639	That same year, the first commercial automated cellular network (1G), which used
640	analog RF radiation, was launched in Japan by Nippon Telegraph and Telephone.
641	Electrical and electronics industries were faced with hygiene and toxicological
642	subjects in which they had no indigenous expertise. But they knew that exploration
643	of these areas could significantly impact their operations.
644	Numerous research projects of different styles were pursued by industry focusing
645	on ELF or RF which were expected, within industry, to placate the hypotheses and
646	apprehensions of biologists and health specialists. As the results of these early
647	studies were interpreted differently by different camps, the gulf between the views
648	of industry and those of the health community on impacts of NTER became

649	apparent. Those differences of opinion became entrenched, and in August 2007,
650	the BioInitiative Report was published by a group of academics who challenged
651	the views of industry's answer was swift (COMAR 2009).
652	IEEE is possibly the largest technical professional organization in the world with
653	450,000 members, and it could use its influence to promote its views to
654	governments, particularly in the Western world. In the end, when faced with what
655	it considered uncertain science, industry opted to deny effects of NTER in
656	standards setting, acknowledging only electrocution, cardiac fibrillation, and shock
657	for ELF (IEEE 2002) and heat effects for RF (IEEE 1991). Both focused on short
658	term effects, substantially avoiding (Maisch 2009) the chronic health effects
659	typically tackled by epidemiology.
660	Independently from this conflict, symptoms were increasingly experienced in
661	human populations due to the enrichment of NTER exposures. Non-thermal
662	protection limits have been published to alleviate the symptoms of NTER
663	exposures in sensitive individuals (Belyaev 2016).
664	We believe it is time for industry to re-evaluate its positions on the basic hygiene
665	of NTER. This is particularly urgent since industry has used dated arguments to
666	develop a style of telecommunications relying heavily on wireless that has the
667	potential to exert substantial public health impacts.

Biological Consequences

The huge scientific literature reporting biological impacts of NTER (ORSAA) can only be summarized here. The numbers presented in Table 3 should dispel any doubts on the opinion of the general scientific literature.

Perturbation of OXPHOS: Reactive Oxygen Species

Even under the best conditions, and without NTER exposure, the electron transport chain leaks at least 0.1-2% of the electrons it processes as ROS, mostly from Complex I. Henry Lai from the University of Washington has repeatedly compiled the electromagnetic radiation literature on biological effects (Lai 2018; Lai 2019; BioInitiative updates).

At the top of Table 3, we can see that a vast majority (89-90%) of articles in the literature investigating the connection between ELF or RF radiation and free

Table 3. Literature confirming Effects of Non-Thermal Electromagnetic Radiation (NTER)

radical or oxidative effects confirm the electron losses from exposures.

Effect	Electromagnetic Fields	Number of Studies	% Positive (footnote)
Free Radical-Oxidative	Low Frequency	229	89%
Free Radical-Oxidative	Radio Frequency	225	90%
Free Radical-Oxidative	Radio Frequency	354	89% (1)
Neurological	Radio Frequency	435	77%
Reproduction/Development	Radio Frequency	335	83% (2)
Genetic Effects	Radio Frequency	466	70% (3)

¹This includes 95% of 86 studies with a SAR ≤ 0.40 W/kg, ten times less than the 4.0 W/kg threshold of harm that IEEE/ICNIRP use in their RF radiation exposure limits.

²Among studies that reported significant effects, 56 studies used a SAR \leq 0.40 W/kg, and 37 studies a SAR \leq 0.08 W/kg.

587 588	³ Including 79% of 144 studies of gene expression.
589	Yakymenko's review (2016) sampled 100 studies investigating oxidative effects:
590	93 of those confirmed induction by RF NTER, solidifying Lai's assessment.
591	Among the 93, 4 were in humans, 17 in vitro, and 72 in animals and plants. Of
592	note, a wide variety of NTER signals were effective at producing effects in plants
593	(Kundu 2021a, Kundu 2021b; Porcher 2023; Porcher 2024).
594	Table 3 also summarizes general statistics on other aspects of NTER biological
595	effects, specifically neurological, reproduction/developmental and genetic effects.
596	
597	Health Consequences
598	Given that equation 12 above links wireless capacity to impacts, what does the
599	current state of science suggest for a future heavy with NTER exposures?
700	The biological results reported above clearly support caution. There are in fact
701	many mechanisms and diseases involved.
702	
703	Given that leukemia was detected first, and that cancer is intensely studied, it is not
704	surprising that there would already be substantial evidence that cancer can be
705	induced both by the RFs of portable phones (NTP 2019) and cell towers (Falcioni
706	2018) as well as by ELF exposures.

707	The nervous system was prominent in both RF results, apparently because it is
708	highly dependent on the supply of ATP.
709	Our own in vitro work on ELF (Li 2013) has shown that what is true for leukemia
710	is likely true for other cancers, as NTER challenges a very basic physiological
711	process, OXPHOS. This means that variable exposures to NTER will produce a
712	fluctuating level of ATP production and a wider variety of daughter cancer cells
713	(Li 2013), making an already existing tumor seed more malignant. This wide-
714	ranging effect of NTER on carcinogenicity is confirmed by epidemiology (Dode
715	2011; Hardell 2013; Choi 2020).
716	
717	An extensive body of biological data reported in the previous section confirms the
718	link between NTER and free radicals. This is further supported both in individual
719	in vitro studies on normal (Alipour 2022; Benavides 2023) and cancer cells (Li
720	2013), and in wide reviews (IARC 2013; Yakymenko 2016). ROS have long been
721	related to chronic diseases such as Parkinson's and Alzheimer's (Houldsworth
722	2024) . So, NTER could play its role in keeping their incidences rising.
723	
724	The case of diabetes positions NTER as an endocrine disruptor. NTER alters pH
725	and ROS levels in important compartments of the human body. The ELF or RF
726	fields are capable of interference with the activity of free protons in the

727	intercellular interstitial fluid, resulting in impaired binding of insulin to the GLU4
728	receptor. The interference relates to the Grotthuss mechanism (Popov 2023), a
729	basic proton exchange that occurs completely naturally in water and allows the
730	measurement of pH even in pure water. Biological dysregulation appears to occur
731	over 7 years (Héroux 2024).
732	The file on reproductive hazards from NTER is convincing, which means that
733	unless NTER exposures are curbed, the worldwide decrease in fertility, particularly
734	in males, will probably continue (ICBE-EMF 2022).
735	
736	Many of these diseases have been labeled "diseases of civilization" (Milham
737	2010). They are of course multi-factorial, but some of them show good correlation
738	with rises in human NTER exposures. For many of them, including diabetes
739	(Milham 2013), there is hope that if exposures are controlled, the growth of
740	prevalence could be reversed.

741	Reversibility
742	But some chronic consequences of NTER exposures may not be reversible.
743	Applied to reproductive tissues, NTER action could undermine OXPHOS's
744	efficiency, resulting in irreversible devolution (as opposed to evolution).
745	OXPHOS currently yields 30 to 32 ATP molecules, but mitochondrial
746	polymorphism and heteroplasmy are currently acknowledged as agents in
747	progressive diseases such as aging and cancer (Smith 2022). The 13 genes resident
748	in mitochondria (compared to 32,000 in the nucleus) are described as the
749	"mitochondrial time clock", because this is where mutations accumulate the fastest
750	in human genetics (Cabrera 2021).
751	Challenging the very basic process powering biological systems, especially at the
752	genetic level, is a dangerous game. "Tamper with this reaction at your peril." (Lane
753	2015; evolutionary biochemist and winner of the 2015 Biochemical Society
754	Award).
755	
756	Conclusion
757	Modeling living tissues as sugar/water/salt, or as separate bio-molecular
758	components such as protein, biopolymers and solvated biomolecules excludes the
759	most essential element of the living process, which is the continuous traffic of
760	electrons and protons maintained by metabolism.

761	These currents are required by the Second Law of Thermodynamics, and their
762	vulnerability to NTER is enhanced by the anatomy of OXPHOS.
763	In a more complete model, and from the principle of superposition, oscillating
764	electric or magnetic fields penetrating from the environment will alter the tissue's
765	electron and proton currents. These can be far more easily disturbed by external
766	electromagnetic fields than ionic species. To be biologically active, NTER does not
767	need to produce ionized targets or electronic currents itself, but only to disturb
768	those already provided by biology.
769	The present environmental perspective is sad given that a substantial engineering
770	toolbox is available to mitigate NTER exposures: optical fiber, wire twisting,
771	earthing practices, DC power. But a reversal of exposure tendencies will be
772	difficult, as industry has long enjoyed the support of a critical actor, the military.
773	The same wireless communication techniques used to enable maneuverability in
774	war theaters can also be used for high data rate access in civilian environments.
775	Innovations such as 5G are useful to the military. Consequently, the military
776	support these developments with the goal of achieving superiority over their
777	adversaries in a theater of war (Department of Defense 2020).
778	The alliance between industry and the military certainly has some practical
779	advantages, but it has one major drawback.

780	If your environment is made to mimic a theater of war, it will not be a theater of
781	health.
782	This paper addresses aspects of electron and proton dynamics in living systems.
783	While it raises the subject of telecommunications signals crest factors, it ignores
784	characteristics of common carrier modulations such as GSM and LTE, believed to
785	be of importance in determining health impacts (NTP 2019). Refinement of
786	modulations may minimize biological impacts, with the ultimate goal of
787	controlling enough of those impacts to uncover new modulation schemes capable
788	of reducing major health effects.
789	
790	Acknowledgements
791	Dr. Gary Woods, New Hampshire Representative and retired Hand Surgeon, for his statement:
792	"The human body is already ionized."
793	
794	REFERENCES
795	Alipour M, Hajipour-Verdom B, Javan M, Abdolmaleki P (2022) Static and electromagnetic
796	fields differently affect proliferation and cell death through acid enhancement of ROS generation
797	in mesenchymal stem cells. Radiat Res 198: 384–395.
798	
799	Anghileri LJ, Robert J (eds) (1986) Hyperthermia in Cancer Treatment. Volumes I, II, III. CRC
800	Press, Boca Raton, Florida.

801	
802	Bandara P, Carpenter D (2018) Planetary electromagnetic pollution: it is time to assess its
803	impact. Lancet Planet Health 2(12):e512-e514. doi: 10.1016/S2542-5196(18)30221-3
804	
805	Belpomme D, Irigaray P (2023) Combined Neurological Syndrome in Electrohypersensitivity
806	and Multiple Chemical Sensitivity: A Clinical Study of 2018 Cases. J Clin Med 12:7421.
807	https://doi.org/10.3390/jcm12237421
808	
809	Belyaev IY, Shcheglov VS, Alipov YD, Polunin VA (1996) Resonance Effect of Millimeter
810	Waves in the Power Range From 10^{-19} to 3×10^{-3} W/cm ² on <i>Escherichia coli</i> Cells at Different
811	Concentrations. Bioelectromagnetics 17:312-321.
812	
813	Belyaev I, Dean A, Eger H, Hubmann G, Jandrisovits R, Kern M, Kundi M, Moshammer H,
814	Lercher P, Müller K, Oberfeld G, Ohnsorge P, Pelzmann P, Scheingraber C, Thill R (2016)
815	EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related
816	health problems and illnesses. Rev Environ Health 31: 363–397.
817	
818	Benavides RAS, Leiro-Vidal JM, Rodriguez-Gonzalez JA, Ares-Pena FJ, López-Martín E
819	(2023) The HL-60 human promyelocytic cell line constitutes an effective in vitro model for
820	evaluating toxicity, oxidative stress and necrosis/ apoptosis after exposure to black carbon
821	particles and 2.45 GHz radio frequency. Sci Total Environ 867:161475.
822	

823	Bennett CH (1977) The Simulation of Infrequent Events. In: Molecular Dynamics and Transition
824	State Theory 5: 63–97. ACS Symposium Series 46. doi: 10.1021/bk-1977-0046.ch004
825	
826	Binhi VN, Rubin AB (2007) Magnetobiology: the kT Paradox and Possible Solutions.
827	Electromagnetic Biology and Medicine 26:45-62. doi: 10.1080/15368370701205677
828	
829	BioInitiative (2007) BioInitiative Report: a Rationale for a Biologically-based Public Exposure
830	Standard for Electromagnetic Fields (ELF and RF). Sage C, Carpenter D (eds). bioinitiative.org
831	Accessed 26 April 2024.
832	
833	Cabrera VM (2021) Human molecular evolutionary rate, time dependency and transient
834	polymorphism effects viewed through ancient and modern mitochondrial DNA genomes. Nature
835	Scientific Reports 11:5036. https://doi.org/10.1038/s41598-021-84583-1
836	
837	Cameron D (2013) A New—and Reversible—Cause of Aging.
838	https://hms.harvard.edu/news/new-reversible-cause-aging Accessed 26 April 2024.
839	
840	Castelvecchi D (2021) Water transformed into shiny, golden metal.
841	https://www.nature.com/articles/d41586-021-02065-w#ref-CR1.
842	
843	Chandler D (1978) Statistical mechanics of isomerization dynamics in liquids and the transition
844	state approximation. J Chem Phys 68:2959–2970.
845	

846	Choi YJ, Moskowitz JM, Myung SK, Lee YR, Hong YC (2020) Cellular phone use and risk of
847	tumors: Systematic review and meta-analysis. Int J Environ Res Public Health 17: 8079.
848	
849	COMAR (2009) The Committee on Man and Radiation . COMAR technical information
850	statement: expert reviews on potential health effects of radiofrequency electromagnetic fields
851	and comments on the BioInitiative report. Health Physics 97:4.
852	
853	Crawford FS (1968) Waves. Berkeley Physics Course. McGraw Hill, New York.
854	
855	Cukierman S (2000) Proton Mobilities in Water and in Different Stereoisomers of Covalently
856	Linked Gramicidin A Channels. Biophysical Journal 78:1825-1834.
857	
858	Cundin LX, Roach WP (2010) Kramers-Krönig analysis of biological skin. arXiv:1010.3752v1
859	[q-bio.TO] 18 Oct 2010.
860	
861	Department of Defense (2020) Electromagnetic Spectrum Superiority Strategy,
862	https://media.defense.gov/2020/Oct/29/2002525927/-1/-
863	1/0/ELECTROMAGNETIC SPECTRUM_SUPERIORITY_STRATEGY.PDF Accessed 26
864	April 2024.
865	
866	Dode AC, Leão MMD, Tejo FAF, Gomes ACR, Dode DC, Dode MC, Moreira CW, Condessa
867	VA, Albinatti C, Caiaffa WT (2011) Mortality by neoplasia and cellular telephone base stations

868	in the Belo Horizonte municipality, Minas Gerais state, Brazil. Science of the Total Environment
869	409:3649–3665. doi:10.1016/j.scitotenv.2011.05.051.
870	
871	Espenson JH (1981) Chemical Kinetics and Reaction Mechanisms. Mc Graw - Hill Book
872	Company, New York.
873	
874	Fahimi P, Matta CF (2021) On the power per mitochondrion and the number of associated ATP
875	synthases. Phys Biol 18:04LT01.
876	
877	Falcioni L, Bua L, Tibaldi E, Lauriola M, De Angelis L, Gnudi F, Mandrioli D, Manservigi M,
878	Manservisi F, Manzoli I, Menghetti I, Montella R, Panzacchi S, Sgargi D, Strollo V, Vornoli A,
879	Belpoggi F (2018) Report of final results regarding brain and heart tumors in Sprague-Dawley
880	rats exposed from prenatal life until natural death to mobile phone radiofrequency field
881	representative of a 1.8 GHz GSM base station environmental. emission. Environ Res 165:496–
882	503.
883	
884	FCC (1997) Office of Engineering & Technology. Evaluating Compliance with FCC Guidelines
885	for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C. Edition 01-01 to
886	OET Bulletin 65 (Edition 97-01).
887	https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet65/oet65c.p
888	df. Accessed 26 April 2024.
889	

890	Flora SJS (2009) Structural, chemical and biological aspects of antioxidants for strategies
891	against metal and metalloid exposure. Oxidative Medicine and Cellular Longevity 2(4):191-206.
892	
893	Fogarty AC, Laage D (2014) Water Dynamics in Protein Hydration Shells: The Molecular
894	Origins of the Dynamical Perturbation. J Phys Chem B 118(28):7715–7729.
895	DOI:10.1021/jp409805p
896	
897	Frey AH (1994) On the Nature of Electromagnetic Field Interactions with Biological Systems.
898	RG Landes Co, Austin, TX, USA.
899	
900	Gauduel Y, Hallou A, Charles B (2003) Short-Time Water Caging and Elementary Prehydration
901	Redox Reactions in Ionic Environments. J Phys Chem A 107(12): 2011–2024.
902	https://doi.org/10.1021/jp021745p
903	
904	Gulati S, Mosgoeller W, Moldan W, Kosik P, Durdik M, Jakl L, Skorvaga M, Markova E,
905	Kochanova D, Vigasova K, Belyaev I (2024) Evaluation of oxidative stress and genetic
906	instability among residents near mobile phone base stations in Germany.
907	https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4735047. Accessed 26 April 2024.
908	
909	Guy AW, Webb MD, Sorensen CC (1976) Determination of Power Absorption in Man Exposed
910	to High Frequency Electromagnetic Fields by Thermographic Measurements on Scale Models.
911	IEEE Transactions on Biomedical Engineering BME-23, 5:361-371.
912	

913	Gulati S, Mosgoeller W, Moldan D, Kosik P, Durdik M, Jakl L, Skorvaga M, Markova E,
914	Kochanova D, Vigasova K, Belyaev I (2024) Evaluation of oxidative stress and genetic
915	instability among residents near mobile phone base stations in Germany. Ecotoxicology and
916	Environmental Safety 279:116486.
917	
918	Hardell L, Carlberg M, Hansson-Mild K (2013) Use of mobile phones and cordless phones is
919	associated with increased risk for glioma and acoustic neuroma. Pathophysiology 20:85-110.
920	
921	Héroux P (1993) Studies on the Pathophysiology of Electrical Burns and the Assessment of
922	Tissue Vitality and Viability by means of Electrical Impedance. Canadian Electrical Association
923	Report 165 D 286A. Available from: https://invitroplusnet.wordpress.com/home/references/
924	Accessed 26 April 2024. Hard copies of the report are also available from the author.
925	
926	Héroux P (2024) Power Systems, Telecommunications, and Diabetes. In: The impact of
927	Anthropogenic Activities on the Natural Environment and Societies during the
928	Contemporary Period. CRC (in press). Boca Raton, Florida.
929	
930	Héroux P, Belyaev I, Chamberlin K, Dasdag S, De Salles AAA, Rodriguez CEF, Hardell L,
931	Kelley E, Kesari K.K, Mallery-Blythe E, Melnick RL, Miller AB, Moskowitz JL (2023) Cell
932	Phone Radiation Exposure Limits and Engineering Solutions. Int J Environ Res Public Health
933	20:5398. https://doi.org/10.3390/ijerph20075398 .
934	

935	Héroux P, Brissette Y, Dumas J, Bourdages M, Huang F (1991) Assessment of Trauma in
936	Tissues from Electrical Impedance Measurements. In: Electromagnetics in Medicine and
937	Biology, Brighton and Pollack (eds): 215-221. San Francisco Press, San Francisco.
938	
939	Hirst J (2018) Open questions: respiratory chain supercomplexes—why are they there and what
940	do they do? BMC Biology 16:111. https://doi.org/10.1186/s12915-018-0577-5
941	
942	Houldsworth A (2024) Role of oxidative stress in neurodegenerative disorders: a review of
943	reactive oxygen species and prevention by antioxidants. Brain Communications 6(1):fcad356.
944	https://doi.org/10.1093/braincomms/fcad356
945	
946	Hutter HP, Moshammer H, Wallner P, Kundi M (2005) Subjective symptoms, sleeping
947	problems, and cognitive performance in subjects living near mobile phone base stations. Occup
948	Environ Med 63:307–313. doi: 10.1136/oem.2005.020784
949	
950	IARC (2013) Non-ionizing radiation, Part 2: radiofrequency electromagnetic fields. In: IARC
951	Monographs on the Evaluation of Carcinogenic Risks to Humans 102:1–481. WHO Press, Lyon,
952	France.
953	
954	International Commission on the Biological Effects of Electromagnetic Fields (ICBE-EMF)
955	(2022) Scientific evidence invalidates health assumptions underlying the FCC and ICNIRP
956	exposure limit determinations for radiofrequency radiation: implications for 5G . Environmental
957	Health 21:92. https://doi.org/10.1186/s12940-022-00900-9

958				
959	IEEE Std C95.1-1982 (1982) American National Standard safety levels with respect to human			
960	exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz. IEEE: New York, NY,			
961	USA.OMMENT			
962				
963	IEEE Std C95.1-1991 (1991) IEEE Standard for Safety Levels with Respect to Human Exposure			
964	to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE: New York, NY, USA.			
965				
966	IEEE Std C95.6-2002. C95.6 IEEE Standard for Safety Levels with Respect to Human Exposure			
967	to Electromagnetic Fields, 0-3 kHz. IEEE Standards Coordinating Committee 28, IEEE			
968	International Committee on Electromagnetic Safety on Non-Ionizing Radiation. The Institute of			
969	Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY.			
970				
971	ICNIRP International Commission on Non-Ionizing Radiation Protection (1998) Guidelines for			
972	limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz).			
973	Health Phys 74:494–522.			
974				
975	Justesen DR (1975) Toward a Prescriptive Grammar for the Radiobiology of Non-Ionising			
976	Radiations: Quantities, Definitions, and Units of Absorbed Electromagnetic Energy—An Essay.			
977	J Microw Power 10:343–356.			
978				

979	Krittika S, Yadav P (2022) Alterations in lifespan and sleep: wake duration under selective			
980	monochromes of visible light in Drosophila melanogaster. Biology Open 11:bio059273.			
981	doi:10.1242/bio.059273			
982				
983	Kundu A, Vangaru S, Bhowmick S, Bhattacharyya S, Mallick AI and Gupta B (2021) One-time			
984	Electromagnetic Irradiation Modifies Stress-sensitive Gene Expressions in Rice Plant.			
985	Bioelectromagnetics 42:649-658. https://doi.org/10.1002/bem.22374			
986				
987	Kundu A, Vangaru S, Bhattacharyya S, Mallick AI and Gupta B (2021) Electromagnetic			
988	Irradiation Evokes Physiological and Molecular Alterations in Rice. Bioelectromagnetics			
989	42:173-185. https://doi.org/10.1002/bem.22319			
990				
991	Kuss-Petermann M, Wenger OS (2016) Electron Transfer Rate Maxima at Large			
992	Donor-Acceptor Distances. J Am Chem Soc 138:1349-1358. doi:10.1021/jacs.5b11953			
993				
994	Lai H (2019) Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and			
995	Cellular Free Radicals. Electromagn Biol Med 38(4):231-248.			
996	doi: 10.1080/15368378.2019.1656645			
997				
998	Lai H. A summary of recent literature (2007-2017) on neurobiological effects of radiofrequency			
999	radiation (2018) In: Markov M, editor. Mobile communications and public health. Boca Raton:			
1000	CRC press: pp 187–222. https://www.taylorfrancis.com/chapters/edit/10.1201/			

1001	b22486- 8/ summary- recent- literature-2007–2017- neurobiologicaleffects- radio- frequency-
1002	radiation- henry- lai
1003	
1004	Lane N (2015) The vital question. WW Norton and Co. New York, London.
1005	
1006	Levine S (2009) The Active Denial System A Revolutionary, Non-lethal Weapon for Today's
1007	Battlefield Center for Technology and National Security Policy. National Defense University.
1008	http://www.ndu.edu/CTNSP/docUploaded/DTP2065 Active Defense-PO60032.pdf
1009	
1010	Li Y, Héroux P (2013) Extra-Low-Frequency Magnetic Fields alter Cancer Cells through
1011	Metabolic Restriction. Electromagnetic Biology and Medicine, 33(4):264-75.
1012	doi: 10.3109/15368378.2013.817334
1013	
1014	Li Y, Héroux P (2019) Magnetic Fields Trump Oxygen in Controlling the Death of Erythro-
1015	Leukemia Cells. Appl Sci 9:5318.
1016	
1017	Maisch D (2009) The procrustean approach: setting exposure standards for telecommunications
1018	frequency electromagnetic radiation, Doctor of Philosophy thesis, Science, Technology and
1019	Society Program - Faculty of Arts, University of Wollongong. http://ro.uow.edu.au/ theses 3148
1020	Accessed 26 April 2024.
1021	
1022	Miclaus S, Deaconescu DB, Vatamanu D, Buda AM (2023) An Exposimetric Electromagnetic
1023	Comparison of Mobile Phone Emissions: 5G versus 4G Signals Analyses by Means of Statistics

1024	and Convolutional Neural Networks Classification. Technologies 11:113.
1025	https://doi.org/10.3390/technologies11050113
1026	
1027	Milham S (2010) Historical evidence that electrification caused the 20th century epidemic of
1028	"diseases of civilization". Medical Hypotheses 74:337–345. doi:10.1016/j.mehy.2009.08.032
1029	
1030	Milham S (2014) Evidence that dirty electricity is causing the worldwide epidemics of obesity
1031	and diabetes. Electromagn Biol Med 33(1):75-8. doi: 10.3109/15368378.2013.783853
1032	
1033	Mitchell P (1966) Chemiosmotic coupling in Oxidative and Photosynthetic Phosphorylation.
1034	Biol Rev 41:445-502
1035	
1036	Moser CC, Ross Anderson JL, Dutton PL (2010) Guidelines for tunneling in enzymes. Biochim
1037	Biophys Acta 1797(9): 1573–1586. doi:10.1016/j.bbabio.2010.04.441
1038	
1039	Nicholls DG (2021) Mitochondrial proton leaks and uncoupling proteins. Biochim Biophys Acta
1040	Bioenerg 1862 (7): 148428. doi:10.1016/j.bbabio.2021.148428. PMID 33798544. S2CID
1041	<u>232774851</u>
1042	
1043	National Toxicology Program (2019) Cell Phone Radio Frequency Radiation. Available online:
1044	https://ntp.niehs.nih.gov/whatwestudy/topics/cellphones/index.html. Accessed 26 April 2024.
1045	

1046	ORSAA. Oceanic Radiofrequency Scientific Advisory Association.			
1047	https://www.orsaa.org/resources.html Accessed 26 April 2024.			
1048				
1049	Pascal R (2012) Life, Metabolism and Energy. In: Astrochemistry and Astrobiology. Springer			
1050	Berlin Heidelberg: 243–269. doi:10.1007/978-3-642-31730-9_8 Accessed 26 April 2024.			
1051				
1052	Pethig R (1979). Dielectric and Electronic Properties of Biological Materials. Wiley,			
1053	Chischester.			
1054				
1055	Popov I, Zhu Z, Young-Gonzales AR, Sacci RL, Mamontov E, Gainaru C, Paddison SJ, Sokolov			
1056	AP (2023) Search for a Grotthuss mechanism through the observation of proton			
1057	transfer. Commun Chem 6:77. https://doi.org/10.1038/s42004-023-00878-6			
1058				
1059	Porcher A, Girard S, Bonnet P, Rouveure R, Guérin V, Paladian F, Vian A (2023) Non thermal			
1060	2.45 GHz electromagnetic exposure causes rapid changes in Arabidopsis thaliana metabolism.			
1061	Journal of Plant Physiology 286. https://doi.org/10.1016/j.jplph.2023.153999			
1062				
1063	Porcher A, Wilmot N, Bonnet P, Procaccio V and Vian A (2024) Changes in Gene Expression			
1064	After Exposing Arabidopsis thaliana Plants to Nanosecond High Amplitude Electromagnetic			
1065	Field Pulses. Bioelectromagnetics 45:4-15. https://doi.org/10.1002/bem.22475			
1066				

1067	Reiter GF, Kolesnikov AI, Paddison SJ, Platzman PM, Moravsky AP, Adams MA, Mayers J
1068	(2011) Evidence of a new quantum state of nano-confined water. arXiv:1101.4994v1 [cond-
1069	mat.mes-hall] 26 Jan 2011. Accessed 26 April 2024.
1070	
1071	Rousset S, Alves-Guerra M-C, Mozo J, Miroux B, Cassard-Doulcier A-M, Bouillaud F, Ricquier
1072	D (2004) The biology of mitochondrial uncoupling proteins. Diabetes 53(Suppl 1):S130-5.
1073	doi: 10.2337/diabetes.53.2007.s130
1074	
1075	Sanders AP, Joines WT, Allis JW (1985) Effects of continuous-wave, pulsed, and sinusoidal-
1076	amplitude-modulated microwaves on brain energy metabolism. Bioelectromagnetics 6(1): 89-97.
1077	https://doi.org/10.1002/bem.2250060109
1078	
1079	Schrödinger E (2010). What is life? the physical aspect of the living cell. Cambridge paperbacks
1080	Science (Reprinted edition). Cambridge University Press, Cambridge.
1081	
1082	Schwan HP, Kay CF (1956) Specific resistance of body tissues. Ann NY Acad Sci, Circulation
1083	Research 4:664.
1084	
1085	Segelstein DJ (1981) The complex refractive index of water. Physics thesis. Columbia
1086	University.
1087	$\underline{https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/11599/SegelsteinComRefInd.pdf}$
1088	

1089	Sommerfeld A (1928) Zur Elektronentheorie der Metalle auf Grund der Fermischen
1090	Statistik. Zeitschrift für Physik (in German) 47 (1–2):1–32. doi:10.1007/bf01391052
1091	
1092	SpinTJ 2024. http://micromagnetics.com/docs/SpinTJ_TMR_magnetic_sensors_brochure.pdf
1093	Accessed 26 April 2024.
1094	
1095	Vance FW, Slone RV, Stern CL, Hupp JT (2000) Comparative absorption, electroabsorption and
1096	electrochemical studies of intervalence electron transfer and electronic coupling in cyanide-
1097	bridged bimetallic systems: ancillary ligand effects. Chemical Physics 253:313-322.
1098	
1099	Vinothkumar K R, Zhu J, Hirst J (2014) Architecture of mammalian respiratory complex I.
1100	Nature 515, 6 November 2014. doi:10.1038/nature13686
1101	
1102	Wertheimer N, Leeper E (1979) Electrical Wiring Configurations and Childhood Cancer. Am J
1103	Epidemiol 109(3):273-284.
1104	
1105	
1106	Yakymenko I, Tsybulin O, Sidorik E, Henshel E, Kyrylenko O, Kyrylenko S (2016) Oxidative
1107	mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol
1108	Med 35:186–202.
1109	
1110	Yoshida M (2002) ATP Synthase. https://www.youtube.com/watch?v=CN2XOe_c0im Accessed
1111	26 April 2024.

1112	
1113	Zilli Vieria C, Chen K, Garshick E, Liu M, Vokonas P, Ljungman P, Schwartz J, Koutrakis P
1114	(2022) Geomagnetic disturbances reduce heart rate variability in the Normative Aging Study.
1115	Science of the Total environment 839:156235.
1116	

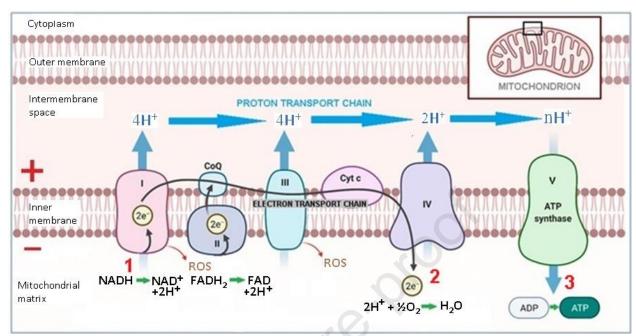
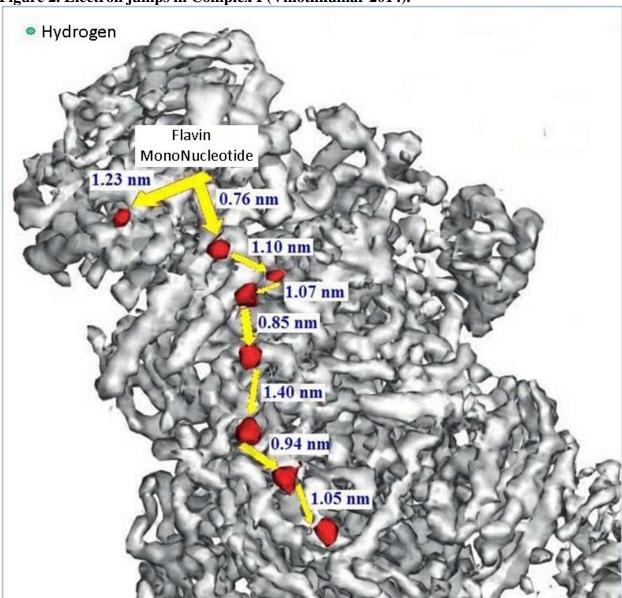



Figure 1. Electron and proton currents are traced in black and blue, respectively, within the OXPHOS chain. Molecular Complexes are labeled with black Roman numerals (I to V). The diagram is about 200 nanometers wide. Plus and minus signs in red indicate static polarization of the inner mitochondrial membrane.

1124 Figure 2. Electron jumps in Complex I (Vinothkumar 2014).

1127 Table 1. The total length of active currents that can be influenced by radiation is 1128 considerable.

1129 ¹ 5 for sperm; 200 for skin; 1 000-2 000 for liver; 1 600 for small intestine; 1 700 for muscle; 1130

5 000 for heart muscle; 600 000 for human egg; 2 000 000 for brain cell. See Figure 3.

² Counting only active ATPS; total ATPS can be up to 100 times higher (Fahimi 2021).

1131 1132

Cells in human body	Mitochondria per cell	ATP Synthase molecules per mitochondrion	Number of 150 nm Conductors (Cells x Mito x ATPS) in human body
36 x 10 ¹² (male) 28 x 10 ¹² (female)	100¹	100 - 5 000 ²	280 000 000 000 000 000 to 18 000 000 000 000 000 000

Total Length of Receiving Antenna Segments = $4.2 - 270 \ 10^7 \ \text{km}$

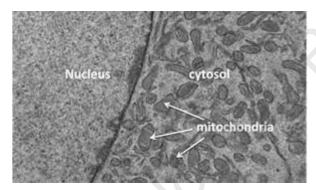
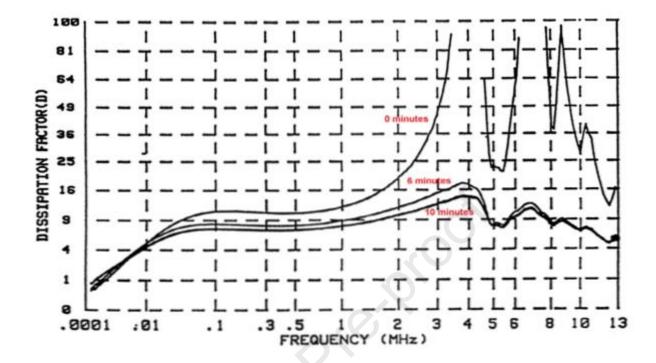



Figure 3. Micrograph shows the border of the nucleus of a cell and adjacent cytosol, which contains large numbers of mitochondria (Cameron 2013).

(Héroux 1993).

Table 2. Electrical Impedance changes in Rat tissues following Anoxia (Héroux 1991; Fahimi 2021).

Figure 4. Dissipation Factor (D) dispersion across frequency (MHz) in the cortex of a

rabbit following anesthetic overdose. Measured at 0, 6, and 10 minutes after overdose

Tissue	Impedance Change (Ohms / minute)	Mitochondria / cell	
Muscle $(n = 10)$	0.436	1 700	
Liver $(n = 10)$	6.15	$1\ 000 - 2\ 000$	
Brain $(n = 2)$	128.7	2 000 000	

Table 3. Literature confirming Effects of Non-Thermal Electromagnetic Radiation (NTER).

Effect	Electromagnetic Fields	Number of Studies	% Positive (footnote)
Free Radical-Oxidative	Low Frequency	229	89%
Free Radical-Oxidative	Radio Frequency	225	90%
Free Radical-Oxidative	Radio Frequency	354	89% (1)
Neurological	Radio Frequency	435	77%
Reproduction/Development	Radio Frequency	335	83% (2)
Genetic Effects	Radio Frequency	466	70% (3)

¹This includes 95% of 86 studies with a SAR ≤ 0.40 W/kg, ten times less than the 4.0 W/kg threshold of harm that IEEE/ICNIRP use in their RF radiation exposure limits.

²Among studies that reported significant effects, 56 studies used a SAR \leq 0.40 W/kg, and 37 studies a SAR \leq 0.08 W/kg.

³ Including 79% of 144 studies of gene expression.